
 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 5, July 2012

 Copyright to IJARCCE www.ijarcce.com 359

An Approach of Preventing Code Injection Attack in

Web Environment
Nikita Patel

1
, Prof. Shivshakti Shrivastava

2
, Prof Hitesh Gupta

3

Patel College of Science & Technology, Bhopal, India
1,2,3

nikitabist
1
@ gmail.com

ABSTRACT— Nearly every web application is developed in a way that the demand of specific data is completed through user input. When

dynamic SQL query is used there is a possibility that user may insert malicious code as input in order to have access of sensitive

information or unauthorized access of the database [7]. We have developed a new mechanism to prevent SQL injection attack, in this

method we have stored some exceptional information in the database which cannot be used in normal case, our application look for such

exceptional information, if it is found in accessed data then request is discarded by the web server.

Keywords: SQL Injection, Malicious Code, Attacker, Unauthorized Access

I. INTRODUCTION

Today web applications are significant part of our life.

The end users communicate with web application by using

web browser. The security of web application is major

concern for web developers, security vulnerability are

frequently exploited by attacker or hacker. Vulnerabilities

may provide a way to an unauthorized person to gain access

to essential information, use resources inappropriately,

interrupt business or commit fraud [1]. With the help of

attack(s) attacker can gain access of whole web site or web

server. Attacker also can access associated database which

may have sensitive information of an organization. Email

service, shopping portals and social websites are commonly

used web applications. The hackers examine a web
application and understand its design, identify any weak

points, and use these weaknesses to exploit the application.

Source code comments, Error messages, HTML source code

view can also assist to hacker for understanding of web

application. There are main three components which are

shown in figure 1.

This paper is organized into ten sections including this

one. The second section gives an idea of web application

vulnerability. Third and fourth section shows the code

injection and SQL injection attack. Section five considers

the existing technique of the SQL injection attack. Section

six shows the proposed architecture. Section seven has all

the detail regarding implementation of defence mechanism,

algorithm, flow chart and results. Finally the paper

concludes in section eight.

Figure 1 Web Application Components

II. WEB APPLICATION VULNERABILITY

Vulnerability is a gap or a weak point in the application

or software, which can be occurred during Software

Development Life Cycle (SDLC), which permits an attacker

to exploit web application [3].

There are numerous weaknesses in the web application,

which can be exploited to complete a malicious mission.

Evaluations of web application security are continuously

being researched, both by attackers and by security

professionals. These weaknesses affect all active web

applications at the same time as others are reliant on specific

application. The development and enhancement of web

technologies also introduces new exploits which

compromise with insightful information and provide access

to unauthorized persons [4].

These are the common web application vulnerabilities.

 SQL INJECTION

 CODE EXECUTION

 COOKIE MANIPULATION

 HTTP RESPONSE SPLITTING

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 5, July 2012

 Copyright to IJARCCE www.ijarcce.com 360

 CROSS SITE SCRIPTING

III. CODE INJECTION ATTACK

Code Injection is an expression used when malevolent

code is inserted into a web application from remote location,

for example input field which is provided for taking input

from the user. The lack of accurate input or input without

sanitization lets an attacker to inject malicious and injected

code executes as a part of application. The end result of code

injection attacks either leak sensitive information, or an

undesirable operation. Attack can be performed within

software, web application etc in which the weakness is

present. Weaknesses or vulnerabilities can be used by an

attacker to take advantage of the web applications or to gain

unauthorized access of information, denial of services, or

perform incorrect operations. HTML code Injection, XSS,

SQL Injection, HTTP Request splitting and XML Poisoning

Attack are the examples of the code injection attack [2].

IV. SQL INJECTION ATTACK

SQL injection is an attack method by which attacker can

inject malicious query for exploiting the web application; By

SQL injection attack, attacker might gain unauthorized

access to a database or to take back sensitive information

directly from the database. Attacker exploits SQL injection

vulnerabilities distantly without help of any special tool.

SQL injection attacks are undemanding in nature; an

attacker just goes with malicious query as input to an

application for accessing private information [2].

4.1. EXPLANATION OF SQL INJECTION

ATTACK

Suppose we have a web application, using this web

application user can see his/her result by submitting roll

number in the text field.

Submitted roll number is used for accessing particular

result from database. Using this roll number programmer

make dynamic query it may be like.

SELECT * FROM student WHERE srollnum =

‘Given_Roll_Number’;

The above query is a standard query for accessing data

from student table where

student = Table Name in the database

srollnum = Attribute name of student table

Given_Roll_Number = Roll number submitted by result

viewer or student

When this query is executed it returns result. The data,

filling by the remote user, is appears to be in the WHERE

clause. Let’s see what happens if we submit this malicious

query [5].

SELECT * FROM student WHERE srollnum = ‘ ‘ OR

'1'='1’;

In reality the web applications do not focus on query -

simply making a dynamic query - our use of quotes has

turned a single-component WHERE clause into a two-

component one, and the '1'='1' part is always true no matter

what the first clause is, that way this malicious query returns

all the result of the specified table.

Figure 2 Result of Malicious Code

V. EXISTING TECHNIQUES OF SQL INJECTION

ATTACK PREVENTION

There are many other techniques for prevention of SQL

injection [8] like

 Using Client Side Scripting Language like

JavaScript

 Parameterized Query

 Stored Procedure

 Regular Expression to Discard Input String

VI. PROPOSED DEFENCE MECHANISM

Web Application executes in two tier architecture, which

consist a web server for handling end user requests,

application server which executes application programs

written in any programming language and Database

server for storing data. The defence mechanism is

focused on the contents which are sent by the database to

application server as a response of requested data. Now

our application code examines for exceptional content,

which are inserted in the database for prevention of such

type of attacks, if such exceptional contents are found in

responded data then the application server deny for

requested data. If such type of request comes again and

again, in that we can block that particular IP address for

some period of time. Proposed architecture shows the

defence mechanism in figure 3.

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 5, July 2012

 Copyright to IJARCCE www.ijarcce.com 361

VII. PROPOSED ARCHITECTURE

Figure 3 Proposed Architecture

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 5, July 2012

 Copyright to IJARCCE www.ijarcce.com 362

7.1. PROPOSED ALGORITHM

Assumptions

W.req = Web Request

STEP 1:

Any client sends a request for a web service

STEP2:

Web server processes and forward this request to the

application server

STEP 3:

Application server forwards this
 to database server.

 (
)

STEP 4:

Database server processes and sends respond back to

application server.

 (Response)

STEP 5:

Application Server Check for exceptional data

If (
)

GO TO STEP 6

Else

GO TO STEP 7

STEP 6:

Requested Service will be discarded

STEP 7:

Requested Service will be granted

7.2. FLOW CHART

Figure 4 Flow Chart

http://www.ijarcce.com/

 ISSN : 2278 – 1021

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 1, Issue 5, July 2012

 Copyright to IJARCCE www.ijarcce.com 363

7.3. RESULTS

Figure 5 & 6 shows the output result of the

proposed method. As the motive was stopped sql

injection attack has fulfill at the end of this work.

Figure 5 Input Window

Figure 6 Output Result after Defence Mechanism

VIII. CONCLUSION

The version of this template is V2. Most of the formatting

instructions in this document have been compiled by Causal

Productions from the IEEE LaTeX style files. Causal

Productions offers both A4 templates and US Letter templates

for LaTeX and Microsoft Word. The LaTeX templates

depend on the official IEEEtran.cls and IEEEtran.bst files,

whereas the Microsoft Word templates are self-contained.

Causal Productions has used its best efforts to ensure that the

templates have the same appearance.

IX. ACKNOWLEDGMENT

The presented research would not have been possible

without our college, PCST, Bhopal. We wish to express our

appreciation to all the people who helped turn the World-

Wide Web into the useful and popular distributed hypertext

and providing information as it is anywhere. We also wish to

pay thanks the anonymous reviewers for their valuable

suggestions, who helped in improving our work.

 REFERENCES

[1] “Common Web Application Vulnerabilities”, Available at
www.computerworld.com, Accessed on 12 Nov 2011.

[2] Nikita Patel, Fahim Mohammed, Santosh Soni, “SQL Injection Attacks:

Techniques and Protection Mechanisms”, IJCSE, JAN, 2011.
[3] “Vulnerability”, Available at www.owasp.org, Accessed on 05 Nov

2011.

[4] “Vulnerability”, Available at www.acunetix.com Accessed on 05 Nov
2011.

[5] “SQL Injection Attack”, Available at www.unixwiz.net, Accessed on

21 Nov 2011.
[6] “Prevention Technique of SQL Injection Attack”, Available at

www.codeproject.com, Accessed on 22 Nov 2011].

[7] Jin-Cherng, Lin and, Jan-Min Chen, “The Automatic Defense
Mechanism for Malicious Injection Attack”, IEEE, 2007

[8] Endler & David, “The Evolution of Cross-Site scripting Attacks”,

IDEFENSE Labs, 2002.
[9] R. Ezumalai, G. Aghila, “Combinatorial Approach for Preventing SQL

Injection Attacks”, IEEE 2009, pp 1212-1217.
[10] Allen Pomeroy and Qing Tan, “Effective SQL Injection Attack

Reconstruction Using Network Recording” IEEE 2011, pp 552-556

[11] Li Shan Dong, Xiaorui & RaoHong , “An Adaptive Method
Preventing Database from SQL Injection Attacks”, IEEE2010, pp

352-355.

http://www.ijarcce.com/

